Что такое матричные фары, устройство и принцип работы

Цена – недостаток матричных фар

В последнее время матричные фары все чаще появляются в оснащении сравнительно доступных автомобилей и, таким примером можно назвать целое семейство .

Чтобы реализовать все возможности матричных фар необходимо наличие: во-первых, сложной управляющей электроники, во-вторых, комплекс устройств, которые считывают информацию о дорожных условиях (видеокамеры, датчики) и даже система навигации, которая предупредит компьютер, если автомобиль приближается к повороту, а также «расскажет» о конфигурации последнего. Посему, такая новомодная штучка, как матричные фары – стоит довольно дорого.

И если вы увидите в прайс-листе напротив нужного товара (матричная фара) стоит сравнительно демократичная цена, то наверняка при необходимости заменить за свой счет разбитую при ДТП фару вам быстро придет на ум, что допотопные галогенки не так уж и плохи…

В заключение добавим, что в ближайшее время мы расскажем, во сколько вообще может обойтись водителю замена парочка матричных фар. Как и ранее вы можете задавать интересующие вас вопросы, а мы с — всегда ответим на них.

Матричные фары — один из вариантов конструкции светодиодных фар (не зря компания Audi, внедрившая это решение одной из первых, называет его Matrix LED)

Источники света все те же, а важное различие — в том, как организована работа этих источников

В описаниях матричной оптики акцент нередко делают на количестве светодиодов — к примеру, в каждой из мерседесовских фар Multibeam работает 24 диода, а в усовершенствованном варианте, который представят публике вместе с новым поколением Е-класса, их будет уже 28. Однако и в «обычных» светодиодных фарах количество источников света запросто может составлять несколько десятков. К примеру, на сравнительно доступном Audi A3 за ближний свет отвечают девять «светодиодных чипов», а за дальний свет — десять светодиодов

При разговоре о матричных фарах обратить внимание надо не столько на количество, сколько на качество

«Простая» светодиодная оптика воспроизводит структуру, известную нам еще по дедушкиным «Жигулям»: как и раньше, есть отдельные блоки габаритных огней, дальнего и ближнего света — просто устаревшие лампочки уступили место диодам. При переходе речь идет уже не о простом выборе между ближним и дальним, а о создании динамической световой картины, которая постоянно подстраивается под дорожную обстановку. В фаре Matrix LED привычное разделение по типу света существует — но включать, приглушать или выключать можно не только отдельный блок диодов (которых в каждой паре пять), но и каждый отдельный светодиод. В итоге электроника располагает множеством вариантов ближнего и дальнего. Свой световой сценарий найдется практически на все случаи жизни — ведь количество доступных комбинаций приближается к одному миллиарду!

Матричные фары в последнее время начали появляться даже на сравнительно доступных моделях — одной из таких недавно стало семейство Audi A4.

Нетрудно догадаться, что для реализации всех возможностей матричных фар нужны, во-первых, сложная управляющая электроника, а во-вторых, система устройств, считывающих информацию о дорожной обстановке — датчики, видеокамеры и даже навигационная система, которая предупредит о приближении к повороту и расскажет о его конфигурации. А значит, эта новомодная оптика — штука дорогая. И если в прайс-листе в соответствующей графе стоит сравнительно гуманная сумма, то при необходимости за свой счет менять разбитую в аварии фару быстро может прийти в голову в мысль, что не так, может быть, и плохи допотопные галогенки… Не зря же новомодная оптика одной из первых попала в нашу рубрику с говорящим названием «Посчитали — прослезились». Сможете угадать, в какую сумму обойдется замена пары фар? Правильный ответ .

Что такое светодиодные фары, и как они работают?

 

Большинство людей знают, что светодиоды – это источники света, основанные на светоизлучающих диодах, которые имеют ряд преимуществ как перед галогенными, так и перед ксеноновыми лампами. В том числе и в автомобильной промышленности. Но мало кто задумывается, что светодиоды по сравнению с галогенными лампами более дороги и сложны в процессе производства. Тем не менее светодиоды захватывают автопромышленность.

Почему? Все дело не только в их ярком освещении, но и в их невероятной энергоэффективности за счет того, что каждый используемый диод в фаре потребляет гораздо меньше энергии по сравнению с галогенными или ксеноновыми источниками света. 

Большинство новых автомобилей сегодня оснащены светодиодными дневными ходовыми огнями. Что касаемо полноценных светодиодных фар, пока что в мире LED-фары не стали глобальным стандартом. Тем не менее с каждым годом все больше автомобилей получают в базовой комплектации полноценные светодиодные фары. В будущем, скорее всего, все автомобили (даже дешевые) будут поставляться только со светодиодами. 

Производители, оснащая машины LED-лампами, преследуют одну цель – снижение расхода топлива и снижение вредных выбросов. При использовании светодиодных источников света в автомобиле падает нагрузка на электрическую цепь. Вот почему светодиоды становятся популярны во всем мире. 

Также светодиоды производят кристально чистый свет. Новое же поколение матричных фар позволило достичь огромных успехов в адаптации автомобильного освещения в зависимости от дорожных условий. Это огромный шаг вперед по сравнению с галогенными, ксеноновыми и обычными светодиодными фарами. Единственный минус матричных фар – это невероятно дорогостоящая замена оптики в случае ее повреждения или поломки. 

Как работают светодиодные фары?

Светодиод – это просто полупроводник, который излучает свет, когда через него проходит ток. Для того чтобы полупроводник начал светиться, необходимо ничтожно малое количество электричества. Из-за того что светодиоду нужно мало энергии, аккумулятор для поддержания освещения расходует гораздо меньше энергии по сравнению с галогенными или ксеноновыми лампами. Следовательно, чем меньше расходуется энергии, тем меньше идет нагрузки на двигатель для зарядки аккумулятора, что в конечном итоге влияет на экономичность автомобиля. 

Ток в светодиодных фарах течет от катода к аноду, проходя через полупроводниковый материал, который по проводимости представляет собой что-то среднее между металлом и каучуком. В итоге полупроводник при прохождении электричества начинает испускать фотоны, которые и освещают дорогу впереди автомобиля. 

Из-за простоты конструкции светодиода срок его службы может длиться более десяти лет. Тем не менее светодиодные фары – пока что новая технология. И как она себя зарекомендует, покажет время. К сожалению, пока нет 10-летних автомобилей со светодиодной оптикой, по которым можно было бы сделать вывод о реальном сроке службы светодиодных фар. Ведь в отличие от домашних светодиодных ламп LED-фары в автомобиле подвергаются постоянной тряске, вибрации, перепадам температур и т. п. И кто его знает, как долго будут служить светодиоды в автомобиле. Вполне возможно, что их надежность окажется под сомнением.

Что такое адаптивные светодиодные фары?

Стоит отметить, что не все адаптивные фары являются адаптивными светодиодными блоками. Адаптивный светодиодный блок – это фара, которая может менять направление и/или яркость в соответствии с дорожными условиями за счет изменения порядка свечения светодиодов в блоке и за счет изменения их яркости свечения. 

Что такое светодиодные матричные лампы (Matrix), и как они работают?

В математике матрица определяется как прямоугольный массив чисел, организованный в строках и столбцах, которые рассматриваются как единый объект. Поменяйте «цифры» на «светодиоды и датчики» в этом определении и вы получите матричную концепцию автомобильного освещения.

Светодиодные матричные фары работают в паре с датчиками и камерами, которыми оснащен автомобиль.

Все эти датчики и камеры контролируют дорогу впереди, чтобы определять интенсивность движения и изменяемые дорожные условия (например, резкие повороты).

Все эти данные используются для интеллектуального освещения дороги за счет контроля освещения каждого светодиода в матрице. Но конечная цель матричной фары – сохранить как можно больше света без вреда встречному движению. 

Плюсы

  • Энергетически эффективные источники света
  • Могут быть относительно недорогими 
  • Долгосрочный прогнозируемый срок службы

Современные разработки

Момент устройства светодиодной фары доведён до технологического абсолюта в фаре матричной. В ней водитель может менять и подстраивать под себя и нужды дорожной ситуации отдельный диод. Такие матричные светодиоды могут индивидуально подстроиться под любую, даже сложную обстановку с видимостью.

Головные лампы на светодиодах появились десять лет назад. Светодиодные фары на машинах становятся всё популярнее по причине того, что у них практически нет недостатков. Они потребляют мизерное количество электроэнергии, их ресурс в несколько раз может превышать срок службы других фар, при соблюдении температурного режима ресурс эксплуатации такой лампы будет от пяти тысяч часов и более. Единственный, но ощутимый минус – дороговизна. На современном автомобильном рынке фары в целом – удовольствие не из дешёвых и приближается к стоимости лазерных фар – за цену светодиодной фары иногда можно купить целый автомобиль, пускай и подержанный. С другой стороны, такая лампа при правильной эксплуатации может прослужить много лет и ни разу о себе не напомнить, что в итоге может вылиться в солиднейшую экономию.

Изначально светодиодные фары ставились на машины премиум-класса, на некоторые модели Cadillac, Audi. Сейчас же некоторые производители делают фары на светодиодах, которые можно поставить на место фар ксеноновых, так что светодиодное освещение теперь можно ставить и на марки, изначально на это не рассчитанные. В целом мнение автомобилистов сходится в том, что светодиодные фары, так или иначе, захватят рынок.

Проблема с недостатком света решена благодаря технологическим новшествам, а цена будет постепенно снижаться под натиском спроса и уменьшения цен на материалы. Возможно, в недалёком будущем большая часть автомобилей будет оснащена именно светодиодными фарами. Но пока, по объективным причинам основой рынка остаются фары ксеноновые и галогенные.

Преимущества матричных фар в сравнении с ксеноновыми

Матричные фары обретают все большую популярность среди водителей. Они отличаются прорывными технологиями, а в качестве элемента освещения работают светодиоды.

Свет таких ламп отличается от ксеноновых аналогов и превосходит их по надежности. О преимуществах матричных фар, в сравнении с аналогами, следует рассказать подробнее.

Миллион комбинаций освещения. В основе работы матричных фар лежит принцип возникновения фотонов при прохождении электрического тока через полупроводник. В качестве материалов используется кристалл, а свет образуется благодаря сложной реакции.

Во время прохода электрического тока через полупроводник диод создает фотоновое излучение, не нагревая при этом плазму. Температура остается на одном уровне, а для такой реакции необходимо затрачивать минимум энергии. Матричные светодиодные фары создаются на основе многих видов составляющих. В сравнении с ксеноновыми фарами, матричные имеют миллион вариантов, применяемых для освещения дороги, тогда как аналоги только несколько вариантов свечения. Автомобили премиальных брендов уже имеют в своем оснащении высокотехнологичные фары. Среди них Range Rover Velar.

Несколько блоков матрицы. Матричные фары легко узнать, если поднести вблизи ладонь или какой-либо плоский предмет черного цвета. На поверхности отразится несколько пучков света ярко-белого оттенка. Это лучи, испускаемые светодиодами внутри фар, формирующие светоиспускающую матрицу, состоящую из нескольких блоков.

В конструкцию матричных фар входят:

  • Модули, в каждом из которых располагаются 25 согласованных светодиодов
  • Светодиоды разделены на 5 групп, состоящих из 5 диодов каждая
  • Каждая секция оснащена электронным управлением, специальными отражателями и системой для охлаждения
  • Задача каждой группы выполнять свои специфические функции
  • Светодиоды обладают переменной мощностью для создания вариантов освещения

Преимущества матричных фар. Благодаря своей технологии создания света, матричные фары хорошо освещают дорожное полотно даже при полной темноте в лесу. Тест-драйв Range Rover Velar доказывает это. Когда освещенность дороги близка к нуля, система автоматически включается на всю мощность, создавая свет, подобный издаваемому военными прожекторами системы противовоздушной обороны. Среди преимуществ матричных фар:

  • Дальность освещения, во время тест-драйва она достигала 200 метров
  • Белые лучи фар не блекнут во время движения в пыли
  • Свет не поглощается листьями деревьев и хорошо пробивает темноту в лесу
  • Отчетливо видны границы освещенной зоны
  • При встречном движении пучки лучей расходятся, а движущийся навстречу автомобиль остается в тени
  • Дальний прожектор хорошо освещает обочины по ходу движения и дорогу

Вывод. Матричные фары обречены на успех на рынке автомобилей, благодаря своим передовым технологиям и вариантам создания освещения. Программисты признаются, пока им удалось использовать потенциал инновационной системы приблизительно только на половину, а потому в будущем она станет еще более прогрессивной. Не удивительно, что множество водителей отдают предпочтение матричным фарам в сравнении с ксеноновыми.

Премиальный подход к практичности. Тест-драйв Volvo V90 Cross Country

Смотреть все фото новости >>

Что такое ксеноновые фары, и как они работают?

Ксеноновые фары, подобно галогенным, получили свое название от газа, используемого внутри ламп, установленных в фарах. Однако функция газа в ксеноновых лампах другая: газ в ксеноновых лампах необходим для производства света, а не для того, чтобы продлевать срок службы нити накала, как это происходит в галогенных лампах с помощью газа галоген. 

Как работают ксеноновые лампы?

 

Как упоминалось выше, ксеноновые источники освещения сильно отличаются от галогенных ламп. Особенно свечением. Вы легко распознаете на дороге автомобили с ксеноновыми лампочками по характерному синему оттенку света, который генерируют ксеноновые источники освещения. 

Ксеноновые лампочки используют электрическую дугу между двумя электродами, а не нить накаливания, как это сделано в галогенной лампе. Газ ксенон внутри лампы помогает устанавливать дугу разряда между электродами (что и создает свет). Причем электрическая дуга светится при более низких температурах по сравнению с галогенной лампой. 

В нашей стране ксеноновые источники света попадают под строгое регулирование законодательства. Так, в настоящий момент ксеноновые лампы можно использовать только в специальной автомобильной оптике, которая предназначена под ксеноновые источники освещения. Обычно на таких фарах автопроизводитель указывает специальную маркировку.

Согласно действующему законодательству использование ксеноновых лампочек в фарах, предназначенных под галогенные источники освещения, запрещено. За это предусмотрена ответственность в виде лишения прав. 

 

Тем не менее любой водитель может установить на свой автомобиль вместо галогенных ламп ксеноновые источники освещения. Для этого нужно обратиться в специализированную компанию, которая занимается переделкой автомобильных фар под ксенон.

Далее придется пройти экспертизу на соответствие безопасности транспортного средства после внесения изменений в конструкцию автомобиля, а затем процедуру перерегистрации автомобиля в ГИБДД, получив свидетельство о внесении изменений в конструкцию автомобиля. Естественно, все это затратно как по деньгам, так и по времени. 

Плюсы

  • Срок службы. Ксеноновые лампы могут работать до 10 лет, что делает их использование очень выгодным и эффективным 
  • Яркость. Лампы выдают свет под интенсивным разрядом
  • Ксеноновые лампы ярче, чем галогенные аналоги

Минусы

  • Стоимость. Если вы покупаете подержанный автомобиль с ксеноновыми лампами, возраст которых приближается к 10 годам,  вы должны помнить, что хорошие оригинальные ксеноновые лампы не так дешевы, как вы думаете 
  • Не так энергоэффективны, как светодиодные блоки
  • Лампы со временем тускнеют (дают менее яркое свечение из-за выгорания газа)

П2.3. Оптическая система

Рассмотрим вычисление и отображение оптической системы, состоящей из нескольких линз.

Пусть у нас задана оптическая система в воздухе со следующими параметрами:

П2.3.1. Вычисление параксиальных характеристик оптической системы

Нахождение матриц преломления и переноса.

Для того чтобы найти параксиальные характеристики системы, необходимо вычислить ее , которая определяется как последовательное перемножение матриц и всех элементов оптической системы.

Матрицы преломления для данной оптической системы будут выглядеть следующим образом:

, , ,

Матрицы переноса между поверхностями будут такие:

, ,

Нахождение матрицы преобразования оптической системы

Матрица преобразования оптической системы, состоящей из нескольких компонентов, разделенных промежутками, будет состоять из произведения матриц преломления и матриц переноса для отдельных компанентов:

Вычисление параксиальных характеристик оптической системы.

Зная значение элементов матрицы преобразования оптической системы, можно определить значения параксиальных характеристик:

П2.3.2. Отображение параксиальных характеристик оптической системы

В соответствии с , все положительные отрезки откладываются слева направо, а отрицательные — справа налево.

Отложим (в соответствии с правилом знаков) передний и задний вершинные отрезки и найдем .

Отображение вершинных отрезков

Передний вершинный отрезок

— это расстояние от первой поверхности до передней главной плоскости.Задний вершинный отрезок — это расстояние от последней поверхности до задней главной плоскости.

В данном случае передний вершинный отрезок — положительный, следовательно, откладываем от первой поверхности вправо. Задний вершинный отрезок — отрицательный, следовательно, откладываем его от последней поверхности влево.

Отображение фокальных отрезков

Теперь отложим и фокальные отрезки и найдем положение фокусов.

Передний фокальный отрезок

— это расстояние от первой поверхности до .Задний фокальный отрезок — это расстояние от последней поверхности до .

В данном случае передний фокальный отрезок — отрицательный, следовательно, откладываем его от первой поверхности влево. Задний фокальный отрезок — положительный, следовательно, откладываем его от последней поверхности вправо.

Отображение фокусных расстояний

Переднее фокусное расстояние

— это расстояние от передней до переднего фокуса.Заднее фокусное расстояние — это расстояние от задней главной точки до заднего фокуса.

Прожектора

Для мощного прожектора, дающего узконаправленный пучок света, COB дает наилучшее соотношение цена/качество. Размеры матрицы на SMD-светодиодах слишком велики, чтобы сфокусировать одной линзой или одним отражателем свет в узконаправленный пучок, поэтому на каждый отдельный светодиод ставится своя линза. Изготовление прожектора такой конструкции требует очень высокой точности производства, не говоря о том, что используется большое количество дорогостоящих линз. И хотя прожекторы с углом распределения света менее 13° по-прежнему делают на дискретных светодиодах, наиболее распространенные осветительные приборы с углом распределения свыше 13…15° изготавливаются преимущественно на основе COB-матриц.

Для фокусирования пучка света в прожекторах на основе COB обычно используются отражатели из металлизированного поликарбоната. Причина выбора именно такого материала связана не только со стремлением уменьшить себестоимость светильника, но и с особенностями конструкции прожектора с COB-матрицей. Отражатель крепится на монтажную поверхность с помощью клея, как, например, отражатели серий BARBARA, BRIDGET и BROOKE производства компании Ledil. В отражателях LENA и LENINA того же производителя применено крепление с помощью специального держателя. Отражатели производства компании Ledil серии MIRELLA могут крепиться одним из двух указанных способов.

Способы крепления отражателя ограничивают его вес. При этом перед разработчиками встает проблема выбора материала для отражателя — тонкий алюминиевый лист или пластик. Тонкий алюминиевый лист деформируется, и после этого не всегда возможно полноценно восстановить отражатель.

Поликарбонат прочен, имеет малую массу и отлично восстанавливает форму после сжатия. Поэтому отражатели из него нашли широкое применение в прожекторах. Правда, с металлизацией возникают проблемы: она недостаточно прочна и меняет свои свойства со временем.

Выходом является использование поликарбоната с повышенными отражающими свойствами, который не требует металлизации. Такой карбонат имеет белый цвет, но изготовленные из него рефлекторы не только не уступают, но даже немного превосходят аналоги с металлизацией. Например, асимметричный отражатель Ledil LENA-X-WAS (рисунок 2) из отражающего поликарбоната имеет КПД, равный 81%, а аналогичный отражатель Ledil LENA-WAS из металлизированного поликарбоната — 80%.

Рис. 2. Асимметричный отражатель Ledil LENA-X-WAS из поликарбоната

Электрокары и гибриды

Хотя работающие на водороде автомобили не являются ни электрокарами, ни гибридами, мы все же отнесем их именно к этой категории. По большому счету водородомобили близки к чистым электромобилям с той лишь разницей, что они могут сами вырабатывать электричество. Наиболее актуальной новинкой в этой сфере является седан Toyota Mirai, по основным потребительским качествам приближенный к рядовым машинам с ДВС. На полностью заправленном баллоне водорода он проезжает около 500 километров, а разгон с 0 до 100 км/ч у Mirai занимает девять секунд. В новой рекламе японская компания продемонстрировала еще один плюс Toyota Mirai: этот автомобиль способен ездить даже на продуктах жизнедеятельности коров. https://youtube.com/watch?v=9pTluy9KpYU

По всей видимости, новый ролик является ответом «Тойоты» на нападки со стороны других производителей. К примеру, Элон Маск (Elon Musk) из Tesla Motors и Карлос Гон (Carlos Ghosn) из альянса Renault-Nissan весьма нелестно отзывались о проекте по созданию автомобиля, ездящего на водороде. Теперь японцы показали, что подходящее для легковушки топливо можно добывать даже из экскрементов крупного рогатого скота.

Продажи Toyota Mirai начнутся в США ближе к концу текущего года. Автомобиль будут сдавать в лизинг за 499 долларов в месяц либо продавать за 57 500 долларов без учета государственных субсидий, которые зависят от штата.

Пока японцы пытаются продвигать идею светлого водородного будущего, британцы не первый год приспосабливают технологии болидов «Формулы-1» к большим маршрутным автобусам. Казалось бы, что общего может быть у этих совершенно разных транспортных средств? Оказывается, таким элементом может стать маховик, который позволит накапливать кинетическую энергию, что снизит расход топлива и объем вредных выбросов. Год назад мы писали про британскую компанию GKN, которая приобрела Williams Hybrid Power Limited, подразделение Williams Grand Prix Engineering Limited (компании — владельца всемирно известной гоночной команды Williams). Основным интересом GKN стал так называемый «кинетический маховик», который предполагается использовать в автобусах. Теперь британцы поделились новыми достижениями своего амбициозного проекта.

Пока все идет намеченными ранее темпами. К концу 2021 года по Лондону будет ездить в общей сложности 500 автобусов, оснащенных углепластиковыми «кинетическими маховиками». Они будут раскручиваться во время торможения с помощью электромотора. При разгоне процесс будет запущен в обратном направлении. По расчетам инженеров, такой метод гораздо эффективнее обычного рекуперативного торможения, в котором используются аккумуляторные батареи.

По новым данным инженерной компании GKN, использование маховика позволит снизить вредные выбросы в окружающую среду на 50-75 процентов. Столь впечатляющие показатели стали доступны благодаря работе дизельного двигателя при постоянных оборотах — 1500 в минуту. Также использование инновационного маховика позволит снизить шум ускоряющегося автобуса.

Благодаря использованию углепластикового маховика в качестве источника энергии для электромотора можно будет сэкономить на двигателе внутреннего сгорания — он может стать компактнее и дешевле. По расчетам GKN, срок окупаемости инновационной системы составит всего два года. Также британцы рассказали о планах по дальнейшему совершенствованию своих автобусов. В перспективе в трансмиссию можно будет интегрировать небольшую батарею, которая вкупе с маховиком позволит проезжать несколько кварталов с полностью заглушенным двигателем внутреннего сгорания.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Моя база
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector