Важность высокого качества электротехнической стали
Для того, чтоб была в наличии возможность осуществлять правильные вычисления показателей, следует применять данные по характерным особенностям различных видов стали. Помимо этого немаловажным фактором является такой показатель, как конфигурация магнитной системы. Все факторы можно условно поделить на технологические и условные. К первому типу факторов можно отнести резку стали на платины, аккуратность при удалении заусенцев, качество отжига, покрытие лаком. К факторам второго типа относятся способы и форма сопоставления пластин, которые были выполнены из стали
Также достаточно важной причиной, по которой увеличивается численность потерь в оборудовании, которое уже используется, является наличие нестабильных характеристик самой стали. Также возможны неполадки по причине небрежной сборки, при которой были допущены повреждения механического рода
Несмотря на вышеуказанную информацию, при использовании оборудования, которое было собрано с полным учетом всех норм, все равно имеются отклонения от идеальных показателей, которые составляют примерно до пяти процентов
Поэтому данную особенность обязательно следует принимать во внимание, при осуществлении контроля за предельными показателями. Поэтому к параметрам, которые указаны в общем стандарте ГОСТ, все равно следует добавлять вероятность потери холостого хода трансформатора
Данный показатель может составлять примерно пятнадцать процентов
Важно осуществлять контроль за половиной данного значения
Режимы работы электрической цепи
Известно, что электрическая цепь – это совокупность определённых устройств, которые обеспечивают постоянное, непрерывное прохождение электрического тока. Работа цепи невозможна, если в ней отсутствуют какие-либо элементы; в обязательном порядке должны присутствовать как источники энергии, так и её проводники, а приёмники, как правило, — это основные устройства, образующие данную цепь. Если учесть, что в электрической цепи встречаются различные элементы, которые делятся на три основные группы: источники энергии, проводники тока и приёмники, т. е., те элементы, которые питаются от тока и преобразуют энергию в другие её виды, то можно предположить, что существует и различные режимы работы электрических цепей.Основные режимы работы электрических цепейКак уже было сказано ранее, любая электрическая цепь может иметь довольно сложную структуру, зависящую от количества элементов в ней и её разветвлённости. Всё это приводит к тому, что цепь может работать в различных режимах. Выделяют три основных режима работы: нагрузочный (или согласованный), режим короткого замыкания, а также режим холостого хода. Они отличаются друг от друга нагрузкой на электрическую цепь. Также можно выделить номинальный режим работы. В этом режиме работы все устройства в цепи работают при условиях, указанных для них как оптимальные. Эти характеристики прописываются производителем в паспортных данных при изготовлении устройства на заводе.Нагрузочный, или согласованный режим работы. Если к источнику энергии в электрической цепи подключается какой-либо приёмник, то он обладает неким сопротивлением. Таким приёмником может быть любое устройство, например электрическая лампочка.Если есть напряжение, то действует закон Ома, таким образом, ЭДС источника получается из суммы напряжений внешнего участка цепи и на внутреннем сопротивлении источника. Падение напряжение во внешней цепи будет равным напряжению на зажимах источника. Оно зависит от нагрузочного тока: чем меньше сопротивление нагрузки, тем больше ток и, соответственно, меньше напряжение на зажимах источника питания цепи.Другими словами можно сказать, что нагрузочный или согласованный режим работы представляет собой режим, при котором происходит передача нагрузки повышенной мощности от источника. В этом режиме сопротивление нагрузки равно внутреннему сопротивлению источника, при этом расходуется максимальная мощность.Однако, такой режим не рекомендуется использовать, так как при длительном превышении номинальных значений устройства могут выйти из строя.Режим работы холостого хода. Этот режим работы электрической цепи характеризует разомкнутое её состояние – ток отсутствует, и все элементы отключены от источника питания. В таком состоянии цепи внутреннее падение напряжение равно нулю, а напряжение на зажимах источника питание совпадает с ЭДС источника.Т. е., можно сказать, что режим холостого хода характеризует электрическую цепь, когда она находится в разомкнутом состоянии, а сопротивление нагрузки отсутствует полностью или отключено. Такое состояние цепи можно использовать для измерения ЭДС источника питания.Режим короткого замыкания. Этот режим работы считается аварийным, электрическая цепь не может работать нормально. Короткое замыкание возникает при соединении двух различных точек цепи, разница потенциалов которых отличается. Такое состояние не предусмотрено изготовителем устройства и нарушает его нормальную работу.В этом режиме работы зажимы источника энергии замкнуты проводником («закорочены»), при этом его сопротивление близко к нулю. Часто, короткое замыкание происходит в тех случаях, когда соединяются два провода, которые связывают между собой источник и приёмник в цепи, как правило, их сопротивление незначительно, так что его можно назвать нулевым.При возникновении режима короткого замыкания, ток в цепи значительно превышает номинальные значения (из-за отсутствия сопротивления). Это может привести в непригодное состояние источник энергии и приёмники в электрической цепи. В некоторых случаях это является результатом неправильных действий со стороны персонала, работающего с электротехническим оборудованием.
Советуем изучить — Программируемые реле времени
Как проверить сопротивление в РХХ посредством мультиметра
Чтобы выяснить, какое сопротивление присутствует, можно воспользоваться мультиметром
Для этого важно выполнить следующие шаги:. • обеспечить доступ к РХХ
Для этого необходимо просмотреть инструкцию, прилагаемую к автомобилю. В руководстве по ТО должна быть подробная информация о местоположении данной комплектующей;
• обеспечить доступ к РХХ. Для этого необходимо просмотреть инструкцию, прилагаемую к автомобилю. В руководстве по ТО должна быть подробная информация о местоположении данной комплектующей;
• отсоединить клапан. Найти электросоединение и отключить клапан РХХ;
• демонтаж клапана с ТС. Лучше всего выполнять порядок действий, описанный в руководстве по ТО авто. Это поможет выполнить процедуру без механических повреждений;
• проверка клапана. Для начала осуществить визуальный осмотр места установки, присутствуют ли скопления углерода, коррозии, пыли и грязи. Осмотреть штифт и место, где установлен клапан на наличие повреждений. Выполнить процедуру перед тем, как начать отсоединение;
• проверка сопротивления. Использовать спецификацию, которая должна быть указана в технической документации к транспортному средству. Далее нужно следовать инструкции, в которой указан диапазон значений конкретно для мультиметра. В том случае, если появилось значение, которое входит в диапазон, звучание клапана не должно измениться. Если устройство не соответствует техническим характеристикам, придется делать замену.
В зависимости от производителя, поставка клапана может осуществляться с прокладкой или без нее
Важно делать замену прокладки каждый раз после демонтажа запечатанной части двигателя. Это позволит избежать утечки охлаждающей жидкости, когда она начинает течь через корпус клапана
Снижение — напряжение — холостой ход
Снижение напряжения холостого хода достигается путем отключения электродержателя от сварочного трансформатора и подачей на сварочный электрод малого напряжения ( не более 12 В) от схемы блока.
Снижение напряжения холостого хода i -го поста ( / х: ухудшает условия возбуждения сварочной дуги ( см. гл.
Устройство снижения напряжения холостого хода сварочных трансформаторов УСНТ-06У2, разработанное ВНИИЭСО и выпускаемое Симферопольским электромашиностроительным заводом, служит для повышения электробезопасности при сварке, резке и наплавке металлов от однофазных сварочных трансформаторов.
Устройство снижения напряжения холостого хода сварочных трансформаторов УСНТ-06У2, разработанное ВНИИЭСО и выпускаемое Симферопольским электромашиностроительным заводом, служит для повышения электробезопасности при сварке, резке и наплавке металлов от однофазных сварочных трансформаторов и рассчитано для работы в открытых помещениях ( под навесом, в кузовах, палатках, кожухах и др.) в условиях умеренного климата при высоте над уровнем моря не более 1000 м, температуре окружающего воздуха от — 45 до 45 С и относительной влажности воздуха не более 80 % при температуре 20 С.
Принципиальная схема устройства защиты человека от поражения. |
Блок снижения напряжения холостого хода сварочных трансформаторов БСНТ-08У2 предназначен для повышения электробезопасности при дуговой сварке штучными электродами, резке и наплавке металлов от однофазных сварочных трансформаторов.
Трансформаторы ТД-500-4 дополнительно снабжены устройством для снижения напряжения холостого хода с 80 до 12 В, что значительно уменьшает возможность поражения током сварщика при смене электродов.
Основной недостаток тиристоров применительно к устройствам снижения напряжения холостого хода — относительно большие токи утечки. При включении тиристоров в первичную обмотку сварочного трансформатора токи утечки, даже если они составляют 50 — 60 мА, практически не влияют на напряжение вторичной обмотки ( сварочной цепи) и не представляют опасности.
Безопасный электродержатель. |
В связи с тем что устройства для снижения напряжения холостого хода в сварочных трансформаторах могут быть неисправными и возникает опасность поражения током, для предупреждения электротравматизма электросварщиков обеспечивают диэлектрическими перчатками.
Необходимо отметить, что различные устройства для снижения напряжения холостого хода источников питания не являются средством защиты от поражения электрическим током. Они лишь повышают электробезопасность при ручной сварке. Наличие этих устройств не освобождает сварщика от полного соблюдения им всех правил и требований безопасности труда.
СТ и выполняет функции регулятора тока и устройства снижения напряжения холостого хода.
Устройство УСНП разработано Вильнюсским филиалом ВНИИЭСО и предназначено для автоматического снижения напряжения холостого хода сварочных генераторов постоянного тока и выпрямителей для ручной дуговой электросварки с пределами регулирования сварочного тока от 40 до 315 А.
Опыт эксплуатации показал, что применение тиристоров в качестве коммутирующих элементов устройств снижения напряжения холостого хода сварочных трансформаторов весьма эффективно. Это обусловлено практически мгновенным включением их в момент прикосновения электродом к свариваемой детали, что существенно облегчает зажигание дуги и повышает производительность труда сварщика, а также практически неограниченным числом включений, которое они выдерживают.
При ручной дуговой сварке используются устройства УСНП-1 и УСНТ-4 ( табл. VII.1) для автоматического снижения напряжения холостого хода сварочных преобразователей постоянного тока, трансформаторов и выпрямителей.
Проверка работы холостого хода производится при подключении в сеть первичной обмотки.
Вторичная, при этом, на нагрузку не включается. Имеем напряжение U1на первичной обмотке, и напряжение U2 на вторичной. Ток I1будет иметь некоторое значение, в отличие отI2 который будет равен нулю.
Схема подключения для данного опыта представлена на рис. 4
Для лучшего понимания процесса перечертим трансформатор (см. рис.5) в ином виде:
Рисунок 5
Первичная обмотка с числом витков W1 подключена в сеть стандартного напряжения U1. Если обмотка имеет сопротивление не равное бесконечности, то по ней потечет ток I1. Из курса физики знаем, что всякая обмотка, через которую протекает ток, создает магнитное поле. В данном случае переменное поле, то есть интенсивность его меняется во времени и направление поля тоже меняется во времени. Магнитный поток Ф зависит от индуктивности катушки Lи силы тока в ней, в данном случае I1. Формула: Ф = L* I1. Сердечник трансформатора, на котором намотаны катушки, обычно делаются из тонких стальных листов, для уменьшения потерь этого магнитного потока. Однако потери все равно есть, из-за, так называемого, рассеивания. Данный магнитный поток будет одинаковым, как в режиме холостого хода, так и в режиме нагрузки, то есть, когда на вторую обмотку подключен потребитель и по ней потечет ток.
Вышеназванный переменный магнитный поток Ф будет создавать электродвижущую силу как во вторичной обмотке e2, так и в первичнойe1. Во вторичной обмотке нагрузки нет (потребитель не подключен), то нет и тока I2. То есть он равен нулю. А напряжение U2 есть, какое оно мы рассмотрим позже.
В первичной обмотке цепь замкнута и ЕДС e1 создает ток противодействующий основному току I1 и собственный магнитный поток, который противодействует потоку Ф. В связи с этим, ток холостого хода никогда не бывает большим. Для крупных трансформаторов это в пределах 5%, максимум 10% от номинального. Для трансформаторов малой мощности вне ответственных изделиях, например зарядных устройствах телефонов, этот ток может доходить до 30 и более процентов от номинального.
Напряжение U1 есть сумма от падений напряжений на активном сопротивлении UА1, а так же от создания магнитного потока Ф, которое обозначим UL1 и падения напряжения от создания потока рассеивания ULS1.
Значит формула, согласно закону Кирхгофа будет иметь вид: U1=UА1+UL1+ULS1. В свою очередь UА1=I1*R1. Где R1 – активное сопротивление на первичной обмотке. Витки обмотки, как правило, медные, по этой причине сопротивление R1 имеет очень малое значение.
Если трансформатор собран для ответственной работы, то и поток рассеивания так же будет мал. ULS1=XLS*I1=2πfLs1* I1, где f–промышленная частота 50 герц, а Ls1 – поток рассеивания. И тем и другим слагаемым можно пренебречь по сравнению с потерями на перемагничивание стали сердечника трансформатора. В этом случае мы допускаем, что все напряжение тратится на создание потока Ф, а он зависит от тока в проводнике, в данном случае I1 и индуктивности L, которая зависит от количества витков в обмотке. Но так как магнитный поток в первичной и вторичной обмотке одинаков, то напряжение U1 и U2 зависят только от количества витков в первичной и вторичной обмотке. Коэффициент зависимости этих напряжений и называется коэффициентом трансформации К = U1/U2= e1/e2 = W1/W2.
Напомним, что противодействие основному потоку возникает только при его изменении, то сеть при переменном потоке (иными словами при переменном токе в цепи). Если обмотку трансформатора включить в цепь постоянного тока, то она наверняка перегорит, поскольку противодействие будет составлять только активное сопротивление, а оно очень мало.
Если нам известен ток первичной обмотки I1, напряжение на первичной обмотке U1, напряжение на вторичной обмотке U2 и потребляемая трансформатором мощность S, то мы можем вычислить следующие параметры:
- Коэффициент трансформации К = U1/U2
- Процентное значение тока холостого хода: i = (Ixx/IH)*100, где Ixx – ток холостого ходав данном случае I1, IH – ток при номинальной нагрузке.
- Активное сопротивление первичной обмотки R1 = PА/Ixx
- Полное сопротивление первичной обмотки Z1 = U1/Ixx
- Индуктивное сопротивление первичной обмотки X1 = (Z21 -R21)
- Коэффициент мощности трансформатора cosφ = S/I12R1
Поскольку пункт 2 невозможно вычислить без проверки трансформатора при нагрузке, то и последовательность проверок, как правило, следующее: под нагрузкой, при коротком замыкании и при режиме холостого хода.
Пишите комментарии,дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.
Холостой ход трехфазного трансформатора
Характер работы 3-фазного устройства в режиме ХХ зависит от магнитной системы и схемы подключения обмоток:
- первичная катушка — «треугольником», вторичная — «звездой» (D/Y): имеет место свободное замыкание ТГС тока I1 по обмоткам устройства. Поэтому магнитный поток и ЭДС являются синусоидальными и нежелательные процессы, описанные выше, не происходят;
- схема Y/D: ТГС магнитного потока появляется, но ток от наведенной им дополнительной ЭДС свободно течет по замкнутым в «треугольник» вторичным катушкам. Этот ток создает свой поток вектора магнитной индукции, который гасит вызывающую его третью ГС основного МП. В результате магнитный поток и ЭДС, имеют почти синусоидальную форму;
- соединение первичной и вторичной катушек «звездой» (Y/Y).
В последней схеме ТГС тока I1 отсутствует, поскольку для нее нет пути: третьи гармонии каждой из фаз в любой момент времени направлены к нулевой точке или от нее. Из-за этого искажается магнитный поток.
Дальнейшее определяется магнитной системой:
- 3-фазный трансформатор в виде группы 1-фазных: ТГС магнитного потока замыкается в каждой фазе по собственному сердечнику и из-за малого магнитного сопротивления последнего, достигает амплитуды в 15% – 20% рабочего магнитного потока. Она создает дополнительную ЭДС, амплитуда которой может достигать уже 45% – 60% от основной ЭДС. Такой рост напряжения может привести к пробою изоляции с последующей поломкой электроустановок;
- трансформаторы с бронестержневой магнитной системой: имеют место те же явления (третьи гармонические магнитного потока замыкаются по боковым ярмам магнитопровода);
- трехстержневая магнитная система: ТГС пути по магнитопроводу не имеет и замыкается по среде с малой магнитной проницаемостью — воздух, масло, стенки бака. Поэтому она имеет малую величину и значительной дополнительной ЭДС не наводит.
Схема опыта холостого хода трехфазного двухобмоточного трансформатора
Присутствие в схеме 3-фазного трансформатора соединения «треугольник» в значительной степени нейтрализует негативное влияние ТГС магнитного потока и улучшает кривую ЭДС.
В мощных установках для больших напряжений, где требуется соединение обмоток на обеих сторонах «звездой», устанавливают дополнительную нерабочую обмотку (не несет электрической нагрузки), соединенную по схеме «треугольник».
Способы устранения плавающих оборотов двигателя
Приступая к поиску и устранению причин, вызывающих нестабильную работу мотора в режиме холостого хода, в первую очередь нужно проверить:
- Состояние воздушного фильтра и свечей зажигания. При критическом загрязнении их нужно заменить.
- Целостность изоляции высоковольтных проводов. При обнаружении повреждений они подлежат замене.
Проверка герметичности впускного коллектора (видеогид)
Рассмотрим остальные элементы устройства автомобиля, неисправность которых может повлиять на бесперебойную работу двигателя ВАЗ 2114 в режиме холостого хода.
Диагностика электромагнитного клапана
Автомобили с моторами, оснащенными карбюратором, оборудуются электромагнитными клапанами холостого хода. Устройства проверяют следующим образом:
- Отсоединяют провод питания.
- Запускают двигатель для прогрева.
- Подключают провод. Если при этом не слышен чёткий щелчок, деталь необходимо заменить.
Регулировка холостого хода на карбюраторном двигателе (с видео)
Отметим, что основная причина появления плавающих оборотов холостого хода у двигателей такого типа заключается в неправильной работе карбюратора. Регулировка устройства выполняется путём вращения винтов качества и количества топлива.
Исправна ли система EGR на инжекторе
«Плавание» оборотов может быть вызвано заклиниванием клапана рециркуляции отработанных газов (EGR), который установлен в выпускном коллекторе. Нужно периодически удалять загрязнения с седла клапана и его посадочного места при помощи аэрозоля для очистки карбюратора, не допуская попадания жидкости на диафрагму датчика.
Необходимо следить за чистотой седла клапана
Правильно ли работает регулятор холостого хода
РХХ проверяют, измеряя электрическое сопротивление на контактах — для диагностики устройства потребуется тестер (мультиметр), установленный в режим работы «омметр». Для проверки детали:
- Выключим зажигание.
- Отсоединим колодку подключения.
- Замерим сопротивление на контактах A — B и C — D устройства. Оптимальные показания прибора варьируются от 40 до 80 Ом.
- Повторим измерения с контактами B — C и A — D. В этом случае мультиметр должен показать «бесконечность» или обрыв цепи.
Любые нарушения нормальных значений сопротивления означают неисправность регулятора. Отказ РХХ — распространённая причина возникновения плавающих оборотов двигателя на холостом ходу, а при обнаружении неисправности устройство подлежит обязательной замене. Перед тем как приступить к демонтажу детали, необходимо отключить провод «минус» от аккумулятора. После установки новый РХХ калибруют — возвращают на место снятую клемму, включают и через 5–10 секунд выключают зажигание (двигатель запускать не нужно).
Исправность ДМРВ
Для диагностики датчика массового расхода воздуха нужно переключить режим работы тестера на «вольтметр» (20 B). Проверяем деталь, выполнив следующие действия:
- Заглушим мотор и включим зажигание.
- Замерим величину напряжения на разъёме подключения между контактами зелёного и жёлтого проводов. Показания мультиметра должны находиться в диапазоне 0,99 – 1,02 B.
Устройство можно почистить, «продув» аэрозолем для чистки карбюраторов
Видео: Проверяем датчик массового расхода воздуха
Чистота узла заслонки
Узел дроссельной заслонки диагностируется при помощи визуального осмотра на предмет загрязнения. Очищают деталь ватными палочками и зубной щёткой, смоченной чистящим раствором. Для удобства выполнения работ устройство демонтируют. После чистки рекомендуется продуть все каналы и патрубки узла сжатым воздухом, используя насос для подкачки шин.
Чтобы очистить деталь, её необходимо демонтировать
Видео: Как почистить дроссельную заслонку
Можно ли продиагностировать ДПКВ и ДСА
О поломке ДПКВ и ДСА (датчик Холла) сигнализирует индикатор Check Engine, загоревшийся на приборной панели автомобиля. Проверка этих устройств возможна только с помощью специальных приборов (осциллографов). Предварительно можно проконтролировать целостность проводки — в случае её нарушения повреждения следует устранить.
- Датчик ДПКВ установлен на кронштейне, расположенном в непосредственной близости от шкива привода генератора.
- ДСА размещён на механизме привода спидометра коробки переключения передач.
Для более подробного ознакомления с методами обнаружения неисправностей, связанных с нарушением работы мотора в режиме холостого хода, рекомендуется посмотреть следующий видеоролик.
Как проводится опыт холостого хода
Опыт холостого хода подразумевает подачу напряжения на первичную обмотку при отсутствии нагрузки. При помощи подключенных измерительных приборов измеряются электрические параметры конструкции.
Для проведения опыта холостого хода первичную обмотку включают в сеть последовательно с прибором для измерения тока- амперметром. Параллельно зажимам подключается вольтметр.
Следует иметь в виду, что предел измерения вольтметра должен соответствовать подаваемому напряжению, а при выборе амперметра нужно учитывать ориентировочные значения измеряемой величины, которые зависят от мощности трансформатора.
Коэффициент трансформации
Наиболее просто определяется коэффициент трансформации. Для этого сравнивается входное и выходное напряжение. Расчет производится по следующей формуле:
n=U1/U2
Данное отношение справедливо для всех обмоток трансформатора.
Однофазные трансформаторы
В однофазных трансформаторах показания амперметра характеризуют потребляемый ток при отсутствии нагрузки. Данные показания являются конечными и нет необходимости в дальнейших вычислениях.
Трехфазные
Чтобы проверить трехфазный трансформатор, требуется усложнение схемы подключения. Необходимо наличие следующих приборов:
- амперметры для измерения тока в каждой фазе;
- вольтметры для измерения междуфазных напряжений первичной обмотки;
- вольтметры для измерения междуфазных напряжений вторичной обмотки.
При проведении опыта холостого хода производятся следующие вычисления:
- рассчитывается среднее значение тока по показаниям амперметра;
- среднее значение напряжения первичной и вторичной обмоток.
Коэффициент трансформации вычисляется по полученным значениям напряжения аналогично однофазной системе.
Измерение тока
При измерении тока можно определить только величину электрических потерь. Более полно определить параметры конструкции позволяет более сложная схема измерений.
Применение ваттметра
Подключив в первичную цепь ваттметр, можно определить мощность потерь трансформатора в режиме холостого хода. Суммируясь с мощностью нагрузки, найденная величина определяет габаритную мощность трансформатора.
Измерение потерь
При измерениях тока холостого хода и мощности потребления, можно сделать выводы о общих потерях холостого хода, которые приводят к следующему:
- Нагрев проводов обмоток.
- Нагрев сердечника.
- Снижение КПД.
- Появление магнитного поля рассеивания.
Таблица потерь
Особенности работы и применения резонансного трансформатора Тесла
Когда цепочка второй катушки разомкнута, она не использует какой-либо рабочей мощности. У той мощности, что потребляет первая, есть некоторый активный процент (он и представляет собой потери прибора), но доминирует реактивный, отвечающий за намагничивание и отдаваемый генератору. Что касается потерянной мощности, то большая ее часть затрачивается на процессы перемагничивания и генерацию вихрей токов магнитопровода. Из-за этого последний начинает перегреваться. Так как поток рассеяния не зависит от нагрузочного электротока, то мощностные потери имеются не только на холостом ходу, но и при подаче нагрузок. Еще некоторая часть потерь (очень небольшая) затрачивается на нагревание катушечного провода. Ее малое значение обусловлено показателями сопротивления проводка и тока холостого хода.
При напряжении 10/0,4 кВ величина потерь будет возрастать по мере увеличения мощности. Для номинального показателя мощности в 250 кВА потери будут равны 730 Вт, для 400 кВА – 1000 Вт, для 2500 кВА – 4200 Вт. По прошествии лет эксплуатации в магнитопроводе происходят процессы, увеличивающие объем потерь: изнашивается изоляция, изменяются структурные характеристики металла. Из-за этого теряться может до 50% мощности.