Почему в автомобилях применяется напряжение 12 вольт

Максимальная переключаемая мощность

При поиске реле на сайтах магазинов можно встретить такие описания, как «максимальная коммутируемая мощность: 4000 ВА». Это соответствует значению, указанному производителями в примечаниях и означает произведение максимального тока на максимальное напряжение, которое может проводить данное реле. Для 16 А и 250 В переменного тока это ровно 4000 ВА.

На самом деле это бесполезное число. На это указывает диаграмма зависимости напряжения в коммутируемой обратной цепи от тока (максимальная коммутируемая мощность). В то время как для переменного тока параметры, такие как 16 А и 250 В переменного тока, верны, для постоянного тока — не совсем.

Постоянный ток имеет очень нежелательную особенность для контактных элементов. При их отключении (размыкании) возникает электрическая дуга, которая не гаснет сразу, а продолжается до тех пор, пока расстояние между контактами не станет достаточно большим.

Во время дуги контакты плавятся, как при сварке. Переменный ток более «мягкий» по своей природе, потому что напряжение между контактами упадет до нуля максимум за половину периода, что для цепей, работающих с частотой 50 Гц, составляет всего 10 мс. Следовательно, максимальная мощность которую может переключить то же реле, размещенное в цепи постоянного тока, будет значительно ниже «переменных» 4000 Вт. При высоком напряжении 300 В максимальный ток может составлять только 200 мА, поэтому нагрузка будет потреблять только 60 Вт.

Параметр минимального прямого тока и минимальной коммутируемой мощности часто указывается не в примечаниях напрямую, а в виде комментариев. Например, в спецификации к типовому реле только на третьей странице можно найти информацию, написанную маленькими буквами, о том, что минимальное коммутируемое напряжение составляет 5 В постоянного тока, а минимальный коммутируемый ток составляет 10 мА (в реле с позолоченными контактами). Эти условия должны выполняться одновременно.

Если этот процесс не выполняется должным образом, контактное сопротивление может медленно увеличиваться, пока не возникнут проблемы с проводимостью тока. Эффект особенно заметен при использовании реле, предназначенных для переключения нагрузок средней или большой мощности, в местах где протекающие токи прослеживаются, например в тракте аудиосигнала. 

Явление видно еще лучше, когда реле не имеет герметичного корпуса и атмосфера внутри него содержит загрязняющие вещества из воздуха (главный виновник здесь — сера и ее соединения). Поэтому так называемые реле малосигнальные должны иметь герметичный корпус. Только в этом случае можно гарантировать, что они будут исправно работать в течение многих лет в средах с различной степенью загрязнения.

Кроме того, контакты следует покрыть подходящим металлом. Чаще всего для гальваники используют золото, но бывают и сплавы серебра и палладия, которые характеризуются гораздо меньшим сопротивлением.

От чего зависит срок годности АКБ?

Каждый производитель после изготовления батареи устанавливает гарантийный срок ее эксплуатации.

Кроме этого параметра, существует и фактический период, зависящий от многих факторов — своевременности обслуживания, соблюдения правил эксплуатации, состояния электропроводки и прочих моментов.

Из-за того, что условия обслуживания АКБ отличаются, различается и срок годности изделия.

У автовладельцев, которые эксплуатируют машину только в теплое время года, аккумулятор живет дольше всего. Другое дело, когда автомобиль нужен круглый год, вне зависимости от температуры на улице.

В такой ситуации срок годности АКБ снижается. Это вызвано и тем, что во втором случае водитель может накатать больший километраж.

Также на ресурс аккумулятора влияет:

  • Исправность и правильность работы генератора и регулятора напряжения.
  • Подключение к электропроводке автомобиля дополнительного оборудования, имеющего большой номинальный ток.
  • Режим эксплуатации. Меньше всего «живут» аккумуляторные батареи на такси, которые прохаживают большой километраж в течение года. Кроме того, такие автомобили работают в режиме частого пуска двигателя, что создает нагрузку на АКБ и генератор. При активном применении транспортного средства срок службы источника питания не превышает 1,5 лет.

При обычном режиме эксплуатации, когда автовладелец регулярно проверяет аккумулятор и проводит ТО, ресурс батареи составляет 4-5 лет при общем пробеге за этот период в 60-80 тысяч километров.

Чтобы избежать проблем, желательно периодически проверять напряжение генератора и аккумулятора.

Но упомянутый срок службы не наивысший, ведь при аккуратном обслуживании АКБ может проработать до восьми лет.

Но стоит знать, что рано или поздно замена аккумулятора потребуется, ведь с момента начала эксплуатации рабочие пластины постепенно изнашиваются. Чем больше циклов заряда и разрядки проходит батарея, тем быстрее она выходит из строя.

Практика показывает, что ключевую роль играет генератор, его исправность и текущее напряжение

Вот почему этому аспекту необходимо уделять ключевое внимание

1.7.76

Требования защиты при косвенном прикосновении
распространяются на:

1) корпуса электрических машин, трансформаторов, аппаратов,
светильников и т.п.;

2) приводы электрических аппаратов;

3) каркасы распределительных щитов, щитов управления,
щитков и шкафов, а также съемных или открывающихся частей, если на последних
установлено электрооборудование напряжением выше 50 В переменного или 120 В
постоянного тока (в случаях, предусмотренных соответствующими главами ПУЭ —
выше 25 В переменного или 60 В постоянного тока);

4) металлические конструкции распределительных устройств,
кабельные конструкции, кабельные муфты, оболочки и броню контрольных и силовых
кабелей, оболочки проводов, рукава и трубы электропроводки, оболочки и опорные
конструкции шинопроводов (токопроводов), лотки, короба, струны, тросы и полосы,
на которых укреплены кабели и провода (кроме струн, тросов и полос, по которым
проложены кабели с зануленной или заземленной металлической оболочкой или броней),
а также другие металлические конструкции, на которых устанавливается
электрооборудование;

5) металлические оболочки и броню контрольных и силовых
кабелей и проводов на напряжения, не превышающие указанные в 1.7.53,
проложенные на общих металлических конструкциях, в том числе в общих трубах,
коробах, лотках и т.п., с кабелями и проводами на более высокие напряжения;

6) металлические корпуса передвижных и переносных
электроприемников;

7) электрооборудование, установленное на движущихся частях
станков, машин и механизмов.

При применении в качестве защитной меры автоматического
отключения питания указанные открытые проводящие части должны быть присоединены
к глухозаземленной нейтрали источника питания в системе  и заземлены в системах  и .

Классификация МПТ по способу питания обмоток индуктора и якоря

По данному признаку МПТ делятся на 4 вида.

С независимым возбуждением

Обмотки индуктора и якоря не имеют электрического соединения. У генераторов этого типа обмотку возбуждения питает сеть постоянного тока, аккумулятор или специально предназначенный для этого генератор — возбудитель. Мощность последнего — несколько сотых мощности основного генератора.

Область применения генераторов с независимым возбуждением:

  1. системы значительной мощности, где напряжение на обмотке возбуждения существенно отличается от генерируемого;
  2. системы регулирования скорости вращения двигателей, запитанных от генераторов.

У двигателей с независимым возбуждением запитана и якорная обмотка. В основном это также агрегаты большой мощности.

Независимость обмотки индуктора позволяет удобнее и экономичнее регулировать ток возбуждения. Еще одна особенность таких моторов — постоянство магнитного потока возбуждения при любой нагрузке на валу.

С параллельным возбуждением

Обмотки индуктора и якоря соединены в одну цепь параллельно друг другу. Генераторы этого типа обычно применяются для средних мощностей. При параллельном соединении генерируемое устройством напряжение подается на обмотку возбуждения. При соединении в одну цепь обмоток индуктора и якоря говорят о генераторе с самовозбуждением.

По своим характеристикам они идентичны моторам с независимым возбуждением и обладают следующими особенностями:

  • при изменении нагрузки частота вращения практически не трансформируется: замедление составляет не более 8% при переводе от холостого хода к номинальной нагрузке;
  • можно с минимальными потерями регулировать частоту вращения, причем в широких пределах — 2-кратно, а у специально сконструированных моторов и 6-кратно.

Индуктор вращающегося двигателя с параллельным возбуждением нельзя отсоединять от цепи якоря, даже если он уже отключен. Это приведет к наведению значительной ЭДС в обмотке возбуждения с последующим выходом мотора из строя. Находящийся рядом персонал может получить травму.

С последовательным возбуждением

Обмотки соединены в цепь последовательно друг другу. Через обмотку возбуждения течет ток якоря. Генераторы этого типа почти не применяются, поскольку процесс самовозбуждения происходит достаточно бурно и устройство не способно обеспечить необходимое большинству потребителей постоянство напряжения. Их используют только в специальных установках.

Схема последовательного возбуждения

Двигатели этого типа широко применяют в качестве тяговых (электровозы, троллейбусы, краны и пр.): по сравнению с аналогами параллельного возбуждения, при нагрузке они дают более высокий момент с одновременным уменьшением скорости вращения. Пусковой момент также высок.

Запуск двигателя с нагрузкой ниже 25% номинальной, а тем более на холостом ходу, недопустим: частота вращения окажется чересчур высокой, и агрегат выйдет из строя.

С параллельно-последовательным (смешанным) возбуждением

Существует два вида схемы:

  1. основная обмотка индуктора включена параллельно с якорной, вспомогательная — последовательно;
  2. основная обмотка индуктора включена последовательно с якорной, вспомогательная — параллельно.

Схемы систем возбуждения МПТ

Подключение параллельной обмотки до последовательной называют «коротким шунтом», за последовательной — «длинным шунтом». Генераторы этого типа применяются крайне редко.

Двигатели сочетают в себе достоинства аналогов с параллельным и последовательным возбуждением: способны работать на холостом ходу и при этом развивают значительное тяговое усилие. Но и они сегодня почти не применяются.

Рабочие моменты

Давайте разберем некоторые характеристики и особенности машин постоянного тока.

Пуск и режим реверса

К электрическому двигателю подключен регулятор оборотов

В момент, когда двигатель запускается, якорь имеет неподвижное положение, а значит, ЭДС в нем равна нулю. Из-за того, что сопротивление якорной обмотки очень маленькое, пусковой тока якоря намного превышает номинальный. Если представить себе такой пуск двигателя, то он однозначно бы вышел из строя.

  • Чтобы такого не происходило, пусковой ток в двигателях постоянного тока с параллельным возбуждением ограничивается за счет включенного в цепь пускового реостата.
  • Пуск при этом необходимо производить при номинальном значении магнитного потока, благодаря чему увеличивается пусковой момент и быстро растет ЭДС в обмотке якоря. В результате двигатель разгоняется быстрее, а время, когда проходит большой пусковой ток по обмотке сокращается.
  • Когда разгон двигателя завершается, реостат выводится из цепи – делается это либо плавно, либо ступенчато.
  • Для того чтобы остановить двигатель, достаточно отключить подачу питания к нему.
  • Для любого электрического двигателя доступен режим вращения в обратном направлении – реверс. Для этого нужно всего лишь изменить направление тока либо в обмотке якоря, либо в обмотке статора.

Потери мощности и КПД

Даже самый технически совершенный двигатель постоянного тока не может работать без потерь мощности

Любой двигатель или генератор постоянного тока работает с потерями мощности. Их делят на два типа: основные и добавочные.

  • К первым относят магнитные, электрические и механические.
  • Магнитные потери, происходящие в стали обозначают ΔРс. Происходят они из-за того, что во время вращения сердечник на якоре постоянно перемагничивается, поэтому возникают потери на гистерезис и вихревые токи.
  • Электрические потери (ΔРэл) происходят из-за активного сопротивления обмоток, а также сопротивления щеточного контакта, то есть данное значение представляется в виде суммы указанных потерь.
  • Механические (ΔРмех) включают потери на трение подшипников, трение щеток о коллектор, трение вращающегося якоря о воздух (и такое есть) и вентиляционные потери.
  • Все остальные потери называются добавочными и связаны они в основном с взаимодействием различных частей агрегата с магнитным полем.

Потери незначительны при отсутствующей нагрузке

Для расчета каждого типа потерь применяются специальные формулы. Мы не будем так глубоко вдаваться в суть, а скажем лишь, что КПД машины постоянного тока определяется отношением отдаваемой мощности, к потребляемой. Выражают данное значение обычно в процентах.

Современные машины постоянного тока стали очень эффективными. КПД у них обычно варьируется в пределах 75-90%.

Рабочие характеристики

Рабочие характеристики ДПТ

Рабочие характеристики представляют собой следующие зависимости:

  • Скорости вращения, потребляемого тока и мощности двигателя;
  • КПД от полезной мощности при условии, что напряжение питания неизменно.
  • Тока обмотки возбуждения и отсутствия добавочного сопротивления в цепи якоря.

Все эти параметры позволяют говорить о свойствах двигателей в режиме эксплуатации, а также находить оптимальные и экономичные режимы их работы.

Регулировка скорости вращения двигателя

Принципиальная схема регулятора оборотов вращения

Регулировать скорость вращения машины постоянного тока можно тремя способами: изменение напряжения сети, реостатное регулирование, изменение магнитного потока. Давайте обо всем по порядку.

  • Изменение напряжения осуществляется за счет устройств, которые могут, собственно, менять величину напряжения.
  • Реостатное регулирование, как мы уже упоминали по ходу статьи, нуждается во введении в цепь якоря дополнительных резисторов активного типа, то есть меняющих свои характеристики при определенных условиях.
  • Регулирование магнитного потока происходит за счет уменьшения тока возбуждения.

Конечно, мы назвали не все характеристики машин постоянного тока, а лишь основные, но для ознакомления с этими агрегатами этого вполне достаточно.

Видео в этой статье продемонстрирует, как работают данные устройства.

Бистабильное и моностабильное

Бистабильные реле становятся дешевле и доступнее, но многие разработчики пока не обращают на них внимания. В схемах с питанием от сети энергоэффективность не очень важна, но где требуется экономия энергии, они могут оказаться большим подспорьем. Для удержания якоря в одном положении не требуется приложения энергии. Потребление тока происходит при переключении контактов, которое длится несколько десятков миллисекунд, после чего его источник может быть отключен. Устройство будет оставаться в устойчивом состоянии столько, сколько надо, отсюда и название.

Типичные реле имеют только одно стабильное положение, а поддержание другого требует непрерывного протекания тока через катушку.

Бистабильные реле доступны как реле малой мощности, так и средней, для переключения устройств с питанием от сети с потреблением тока в несколько ампер. Практически каждая крупная компания занимающаяся производством реле, имеет их в своем предложении, поэтому выбор действительно велик.

Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями. Для напряжений переменного тока ниже указаны действующие значения.

2.1 Номинальное напряжение системы (nominal system voltage): Соответствующее приближенное значение напряжения, применяемое для обозначения или идентификации системы.

2.2 Наибольшее напряжение системы (исключая переходные и анормальные условия) (highest voltage of a system (excluding transient or abnormal conditions)): Наибольшее значение рабочего напряжения, которое имеет место при нормальных условиях оперирования в любое время и в любой точке электрической системы.

Примечание: это определение исключает переходные перенапряжения, например, вследствие коммутационных оперирований, и временные колебания напряжения.

2.3 Наименьшее напряжение системы (исключая переходные и анормальные условия) (lowest voltage of a system (excluding transient or abnormal conditions)): Наименьшее значение рабочего напряжения, которое имеет место при нормальных условиях оперирования в любое время и в любой точке электрической системы.

Примечание: это определение исключает переходные перенапряжения, например, вследствие коммутационных оперирований, и временные колебания напряжения.

2.4 Зажимы питания (supply terminals): Точка в передающей или распределительной электрической сети, обозначенная как таковая и определенная договором, в которой участники договора обмениваются электрической энергией.

2.5 Напряжение питания (supply voltage): Напряжение между фазами или напряжение между фазой и нейтралью на зажимах питания.

Примечание: эквивалентное определение: напряжение между линиями или напряжение между линией и нейтралью на зажимах питания.

2.6 Диапазон напряжения питания (supply voltage range): Диапазон напряжения на зажимах питания.

2.7 Используемое напряжение (utilization voltage): Напряжение между фазами или напряжение между фазой и нейтралью в штепсельных розетках или в точках фиксированных электроустановок, к которым должны быть присоединены электроприемники.

Примечание: эквивалентное определение: напряжение между линиями или напряжение между линией и нейтралью в штепсельных розетках или в точках фиксированных электроустановок, к которым должны быть присоединены электроприемники.

2.8 Диапазон используемого напряжения (utilization voltage range): Диапазон напряжения в штепсельных розетках или в точках фиксированных электроустановок, к которым должны быть присоединены электроприемники.

Примечание: в некоторых стандартах на электрооборудование (например, в IEC 60335-1 и IEC 60071), термин «диапазон напряжения» имеет другое значение.

2.9 Наибольшее напряжение для электрооборудования (highest voltage for equipment): Наибольшее напряжение, для которого электрооборудование охарактеризовано относительно: a) изоляции; b) других характеристик, которые могут быть связаны с этим наибольшим напряжением в соответствующих рекомендациях для электрооборудования.

Примечание: электрооборудование можно использовать только в электрических системах, имеющих наибольшее напряжение, которое меньшее или равно его наибольшему напряжению для электрооборудования.

2.10 Напряжение между фазами (phase-to-phase voltage): напряжение между двумя фазными проводниками в заданной точке электрической цепи.

2.11 Напряжение между фазой и нейтралью (phase-to-neutral voltage): напряжение между фазным и нейтральным проводниками в заданной точке электрической цепи.

2.12 Линейный проводник (line conductor): Проводник, находящийся под напряжением при нормальных условиях и используемыи для передачи электрической энергии, но не нейтральный проводник или средний проводник.

2.13 Нейтральный проводник (neutral conductor): Проводник, электрически присоединенный к нейтрали и используемый для передачи электрической энергии.

2.14 Фазный проводник (phase conductor): Линейный проводник, используемый в электрической цепи переменного тока.

Схемы преобразователей

Инверторы классифицируются по принципу работы, форме и схеме.

Принцип действия

По данному признаку устройства делятся на два типа: автономные и инверторы, ведомые сетью.


Автономные делятся на несколько подгрупп, объединяющих инверторы:

  • напряжения (ИН): устанавливаются в большинстве ИБП;
  • тока;
  • резонансные.

Инверторы, ведомые сетью иначе называются зависимыми. Применяются, к примеру, в качестве силовых преобразователей на электровозах.

Схемы

Существует несколько основных схем инверторов:

  1. мостовой ИН без трансформатора. Применяется в ИБП мощностью свыше 500 ВА и в различных устройствах, рассчитанных на 220 или 380 В;
  2. ИН с нулевым выводом трансформатора. Применяется в ИБП мощностью 250-500 ВА, в установках напряжением 12 или 24 В и мобильных радиопередатчиках;
  3. мостовой ИН с трансформатором. Используется в ИБП ответственных объектов с потребляемой мощностью от нескольких кВА до десятков.

Принципиальная схема преобразователя

Форма

По форме выходного напряжения инверторы делятся на:

  1. ИН с прямоугольным выходным сигналом. С целью обеспечить требуемую пропорциональность Uвых. управляющая схема варьирует относительную длительность импульсов ключами либо сдвигает по фазе сигналы управления противофазных групп ключей (зависит от конструктивных особенностей переключающего модуля);
  2. ИН со ступенчатым выходным напряжением. Обрабатывают входной сигнал в два этапа: путем высокочастотного преобразования формируется однополярный ступенчатый сигнал, близкий к синусоиде с уменьшенным вдвое периодом, а при помощи мостового преобразователя он превращается в разнополярный с требуемым периодом;
  3. ИН с синусоидальным выходным напряжением. Входной постоянный ток также обрабатывается в 2 этапа: путем высокочастотного преобразования формируется постоянное напряжение, почти равное амплитуде требуемого переменного напряжения, а затем мостовым инвертором, действующим по принципу многократной широтно-импульсной модуляции.

Полученное постоянное напряжение преобразуется в близкое к синусоидальному переменное.

1.7.73

Сверхнизкое (малое) напряжение (СНН) в
электроустановках напряжением до 1 кВ может быть применено для защиты от
поражения электрическим током при прямом и/или косвенном прикосновениях в
сочетании с защитным электрическим разделением цепей или в сочетании с
автоматическим отключением питания.

В качестве источника питания цепей СНН в обоих случаях
следует применять безопасный разделительный трансформатор в соответствии с ГОСТ
«Трансформаторы
разделительные и безопасные разделительные трансформаторы» или другой источник СНН, обеспечивающий
равноценную степень безопасности.

Токоведущие части цепей СНН должны быть электрически
отделены от других цепей так, чтобы обеспечивалось электрическое разделение,
равноценное разделению между первичной и вторичной обмотками разделительного
трансформатора.

Проводники цепей СНН, как правило, должны быть проложены
отдельно от проводников более высоких напряжений и защитных проводников, либо
отделены от них заземленным металлическим экраном (оболочкой), либо заключены в
неметаллическую оболочку дополнительно к основной изоляции.

Вилки и розетки штепсельных соединителей в цепях СНН не
должны допускать подключение к розеткам и вилкам других напряжений.

Штепсельные розетки должны быть без защитного контакта.

При значениях СНН выше 25 В переменного или 60 В
постоянного тока должна быть также выполнена защита от прямого прикосновения
при помощи ограждений или оболочек или изоляции, соответствующей испытательному
напряжению 500 В переменного тока в течение 1 мин.

Минимальный параметр напряжения на входе батареи

При проверке параметров генератора стоит брать во внимание характеристики самого АКБ. Многие автовладельцы интересуются, каким должно быть напряжение на выходе аккумулятора для нормального пуска двигателя

Многие автовладельцы интересуются, каким должно быть напряжение на выходе аккумулятора для нормального пуска двигателя.

Точного ответа здесь нет, но средний параметр должен составлять 12,6-12,7 В. В зависимости от условий эксплуатации этот показатель может корректироваться.

Некоторые производители уверяют, что их продукт имеет напряжение 13-13,2 Вольт. Этот параметр реален, но не стоит измерять напряжение сразу после подзарядки генератором или ЗУ.

Перед проведением работы желательно выждать 1-2 часа. В этом случае U должно опуститься до уровня 12,7-13 В.

Если этот параметр начинает «плавать» или опускается ниже 12 В, это говорит о разряде батареи на 50% или неисправности генератора.

Здесь рекомендуется проверка цепи зарядки или применение внешнего зарядного устройства.

Если продолжать эксплуатацию батареи в этом состоянии, возникает сульфатация свинцовых пластин, что уменьшает работоспособность АКБ и уменьшает срок ее службы.

На практике такое снижение напряжение не является критичным, ведь запустить батарею еще можно, а дальше генератор производит подзарядку до необходимого уровня.

Главное — убедиться в исправности цепи заряда и увеличении напряжении на выводах аккумуляторной батареи.

Если U на выходе опустилось ниже 11,6 В, можно говорить о полном разряде источника питания.

Дальнейшее применение батареи в этом случае невозможно — ее необходимо снимать, выполнить проверку исправности и обеспечить заряд от внешнего устройства.

С учетом сказанного выше можно делать вывод, что напряжение на АКБ при исправном генераторе должно составлять (при заглушенном моторе) 12,6-13,2 В. На практике этот параметр немного ниже и составляет 12,3-12,5 В.

Такое напряжение свидетельствует о незначительном недозарядке АКБ. В этом нет ничего страшного. Главное — не допускать уменьшение U ниже 12 В.

Мощность прикуривателей

Для расчета максимальной мощности используется формула вида Р=I*U*a, где:

  • Р — расчетная мощность;
  • I — сила тока в цепи питания;
  • U — рабочее напряжение
  • a — поправочный коэффициент, учитывающий потери в цепи питания (при базовых расчетах не учитывается).

Например, если устройство рассчитано на напряжение 12 В и силу тока 15 А, то максимальная потребляемая мощность составляет 12*15=180 Вт. Данный параметр определяет кратковременную нагрузку на электрические цепи, запрещается коммутировать оборудование с аналогичным энергопотреблением на длительное время. При протекании электрического тока происходит нагрев металлических жил проводки, что вызывает оплавление или возгорание изоляции. Для коммутации приборов следует использовать штатную розетку или гнездо, установленное самостоятельно.

1.7.78

При выполнении автоматического отключения питания в
электроустановках напряжением до 1 кВ все открытые проводящие части должны быть
присоединены к глухозаземленной нейтрали источника питания, если применена
система TN, и
заземлены, если применены системы IT или TT. При этом характеристики защитных аппаратов
и параметры защитных проводников должны быть согласованы, чтобы обеспечивалось
нормированное время отключения поврежденной цепи защитно-коммутационным
аппаратом в соответствии с номинальным фазным напряжением питающей сети.

В электроустановках, в которых в качестве защитной меры
применено автоматическое отключение питания, должно быть выполнено уравнивание
потенциалов.

Для автоматического отключения питания могут быть применены
защитно-коммутационные аппараты, реагирующие на сверхтоки или на
дифференциальный ток.

Ампераж прикуривателей

Автомобильный прикуриватель представляет собой металлический стакан с контактными пластинами, в который вставляется заглушка со спиралью накаливания. Допустимая сила тока в цепи рассчитывается в зависимости от сопротивления элемента накаливания и напряжения в бортовой сети (согласно закону Ома). Соответственно подбирается сечение многожильных коммутационных проводов и номинал предохранителя, который ставится в салонном блоке (установлен в панели приборов или в багажном отделении машины).

Следует учитывать, что оборудование рассчитано на максимальной мощности на протяжении 10-15 секунд. После нагрева спирали срабатывает биметаллический фиксатор, встроенная в заглушку пружина автоматически размыкает контакты. Номинал предохранителя находится в диапазоне от 10 до 15 А (зависит от производителя и модели машины, информация указывается в инструкции по эксплуатации).

Владелец машины должен заменить вставку на элемент с идентичными рабочими параметрами. Использовать предохранители повышенного номинала или самодельные приспособления («жучки») категорически запрещено. Если происходит повторный выход из строя вставки, то требуется провести диагностику электрической цепи и устранить причину короткого замыкания.

1.7.53

Защиту при косвенном прикосновении следует
выполнять во всех случаях, если напряжение в электроустановке превышает 50 В
переменного и 120 В постоянного тока.

В помещениях с повышенной опасностью, особо опасных и в
наружных установках выполнение защиты при косвенном прикосновении может
потребоваться при более низких напряжениях, например, 25 В переменного и 60 В
постоянного тока или 12 В переменного и 30 В постоянного тока при наличии
требований соответствующих глав ПУЭ.

Защита от прямого прикосновения не требуется, если
электрооборудование находится в зоне системы уравнивания потенциалов, а
наибольшее рабочее напряжение не превышает 25 В переменного или 60 В
постоянного тока в помещениях без повышенной опасности и 6 В переменного или 15
В постоянного тока во всех случаях.

Примечание. Здесь и далее в главе напряжение переменного
тока означает среднеквадратичное значение напряжения переменного тока; напряжение
постоянного тока — напряжение постоянного или выпрямленного тока с содержанием
пульсаций не более 10% от среднеквадратичного значения.

Напряжение питания катушки

На корпусе реле написано, например, 12 В, что означает для его срабатывания потребуется 12 В. Вот только редко бывает напряжение точно требуемого значения. И что делать если напряжение в схеме упадёт до 9 В или повыситься до 15 В?

Если напряжение будет слишком высоким, катушка соленоида, обычно герметично закрытая в небольшом пластиковом корпусе, просто перегреется. Закон Джоуля здесь неумолим. К счастью производители предоставляют некоторый запас по напряжению. И наоборот, если напряжение слишком низкое, через катушку постоянного сопротивления будет протекать меньший ток, что сделает якорь менее слабым на притягивание. А если сила тока слишком низкая, якорь вообще не сдвинется с места.

Это значение, при котором производитель гарантирует замыкание контакта. Оно дается для строго определенной температуры, чаще всего комнатной или аналогичной. При более высоких температурах сопротивление провода увеличивается, поэтому приложение того же напряжения к катушке вызовет протекание более низкого тока (что может быть недостаточно для перемещения якоря).

Напряжение отключения (отпускания) информирует, до какого значения необходимо снизить напряжение питания катушки, чтобы контакты вернулись в исходное положение. Часто это всего лишь 10% от номинального напряжения! Таким образом, реле с напряжением питания 5 В, указанным на корпусе, отключится когда падение напряжения упадёт до 0,5 В, что даже меньше прямого напряжения кремниевых p-n переходов. Разница в процентах вызвана магнитным гистерезисом ферромагнитного материала, из которого изготовлен сердечник электромагнита. 

Это очень удобно, поскольку позволяет значительно снизить энергопотребление катушки в установившемся режиме. Реле с номинальным напряжением питания 12 В достаточно для подачи напряжения выше 8,4 В, а затем его понижения (например до 2 В). Экономия электроэнергии, важная для схем с батарейным питанием, будет огромной.

Фактическое напряжение питания катушки может отличаться от указанного на корпусе, и в довольно широких пределах. Об этом стоит помнить. Подтянув якорь электромагнитом, можно снизить напряжение питания катушки и сэкономить энергию.

1.7.67

Основная изоляция токоведущих частей должна
покрывать токоведущие части и выдерживать все возможные воздействия, которым
она может подвергаться в процессе ее эксплуатации. Удаление изоляции должно
быть возможно только путем ее разрушения. Лакокрасочные покрытия не являются изоляцией,
защищающей от поражения электрическим током, за исключением случаев, специально
оговоренных техническими условиями на конкретные изделия. При выполнении
изоляции во время монтажа она должна быть испытана в соответствии с
требованиями гл.1.8.

В случаях, когда основная изоляция обеспечивается воздушным
промежутком, защита от прямого прикосновения к токоведущим частям или
приближения к ним на опасное расстояние, в том числе в электроустановках
напряжением выше 1 кВ, должна быть выполнена посредством оболочек, ограждений,
барьеров или размещением вне зоны досягаемости.

Выводы

  1. Электромагнитные реле не уйдут с рынка электронных компонентов ещё много лет, несмотря на прогресс и миниатюризацию деталей. Напротив, производители продолжают развивать и инвестировать в эту технологию, о чем свидетельствует спектр доступных реле на рынке.
  2. Бистабильные реле становятся все более популярными. Цена у них доступная, что побуждает к внедрению. Акцент на сокращении потребления электроэнергии электронными схемами, вероятно, подтолкнет проектировщиков внимательнее присмотреться к этой архитектуре, особенно там, где автономное питание.

Используйте реле по назначению, соблюдая естественно требование максимального коммутируемого тока, и они будут служить долго и безотказно.

   Форум по обсуждению материала ЭЛЕКТРОМАГНИТНЫЕ РЕЛЕ ПОСТОЯННОГО ТОКА

В КАКОМ НАПРАВЛЕНИИ ТЕЧЕТ ТОК

В каком направлении течет ток — от плюса к минусу или наоборот? Занимательная теория сути электричества.

БЕСПРОВОДНОЙ БЛОК ПИТАНИЯ

Принципиальная схема беспроводного модуля питания для передачи энергии резонансными катушками.

СХЕМЫ ЭЛЕКТРОМАГНИТНЫХ ПИСТОЛЕТОВ

Приводится несколько рабочих схем электромагнитных Gauss Gun. Первая часть сборника.

ПРОВОДНИКИ И ИЗОЛЯТОРЫ

Что такое изолятор и чем он отличается от токопроводящего материала. Занимательная теория радиоэлектроники.

Заключение

Как можно понять из материалов статьи, сделать своими руками несложный преобразователь 12 – 220 вольт не так и трудно. И, хотя такие устройства и не смогут сравниться по набору дополнительных функций или привлекательности внешнего вида с заводскими, они обойдутся хозяину значительно дешевле. При соблюдении правил эксплуатации самодельный преобразователь будет работать очень долго, ведь в таком простом устройстве практически нечему ломаться.

В качестве дополнения по данной теме в прилагаемой статье приведены подробная информация об инверторах напряжения Преобразователи напряжения для современных высокопроизводительных цифровых систем. А также в нашей группе ВК публикуются интересные материалы, с которыми вы можете познакомиться первыми. Для этого приглашаем читателей подписаться и вступить в группу. В завершение хочу выразить благодарность источникам, откуда почерпнут материал для подготовки статьи:

www.compax.ru

www.electrostation.ru

www.eltechbook.ru

www.amperof.ru

www.electrosam.ru

www.regionvtormet.ru

www.radiostorage.net

Мне нравится5Не нравится

Предыдущая
ИнверторыКак выбрать цифро-аналоговый преобразователь (ЦАП)

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Моя база
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: